
Step 3. ζ(1 + it) 6= 0.

Recall from Step 2 that for c > 1 (strict inequality), we have

∫ x

1

ψ (t) dt =
1

2
x2 −

1

2πi

∫ c+i∞

c−i∞

F (s) xs+1 ds

s (s+1)
+O (1) . (25)

We hope to prove the Prime Number Theorem in the form ψ (t) ∼ t. It
can be shown that this implies

∫ x

1
ψ (t) dt ∼ x2/2. Thus we expect that the

integral over the vertical line c − i∞ to c + i∞ in (25) to be an error term,
i.e. smaller in magnitude than the main term. Yet the integrand contains
a factor xs+1 which is of magnitude xc+1. If c > 1 this term, xc+1, is larger
than the expected main term, x2/2. So we can only have any hope of proving
the Prime Number Theorem if we can choose c = 1. But, is F well-defined

on the line Re s = 1?

From its definition F (s) has ζ(s) on the denominator which we know is non-
zero for Re s > 1, but is it non-zero on Re s = 1?

Lemma 6.19 For θ ∈ R, we have

3 + 4 cos θ + cos 2θ ≥ 0.

Proof Start from the double angle formula

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1.

Then

3 + 4 cos θ + cos 2θ = 2 + 4 cos θ + 2 cos2 θ

= 2 (1 + cos θ)2 ≥ 0.

�

Logarithms of complex numbers Recall that if w ∈ C then w = reiθ for
some r ≥ 0 and θ. The logarithm of w is given by logw = log r + iθ. But in
fact w = rei(θ+2πk) for any k ∈ Z, in which case logw = log r + i (θ + 2πk).
Thus the logarithm is not unique. Nonetheless, the logarithm of the modulus
|w| is unique and equals

log |w| = log r = Re (log r + i (θ + 2πk)) = Re logw,

the real part of any logarithm of z. In particular, it can be shown from the
Euler product for the Riemann zeta function that a logarithm of ζ(s) is given
by
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log ζ(s) =
∑

p

− log

(

1−
1

ps

)

=
∑

p

∞
∑

m=1

1

mpms
.

Then using log |ζ(s)| = Re log ζ(s), we get

log |ζ(s)| = Re
∑

p

∞
∑

m=1

1

mpms
(26)

for Re s > 1. Yet

Re
1

pms
= Re

e−itm log p

pmσ
=

cos (−mt log p)

pmσ
=

cos (θm,t,p)

pmσ
,

where θm,t,p = −mt log p. Hence

log |ζ(s)| =
∑

p

∞
∑

m=1

cos (θm,t,p)

mpmσ
.

Lemma 6.20 For σ > 1 we have

|ζ(σ)|3 |ζ(σ+it)|4 |ζ(σ+2it)| ≥ 1.

Proof Consider

log
(

|ζ(σ)|3 |ζ(σ+it)|4 |ζ(σ+2it)|
)

= 3 log |ζ(σ)|+ 4 log |ζ(σ+it)|+ log |ζ(σ+2it)|

=
∑

p

∞
∑

m=1

(

3 cos (θm,0,p) + 4 cos (θm,t,p) + cos (θm,2t,p)

mpmσ

)

.

Yet θm,0,p = 0 and θm,2t,p = 2θm,t,p and so this last expression equals

∑

p

∞
∑

m=1

(

3 + 4 cos (θm,t,p) + cos (2θm,t,p)

mpmσ

)

≥ 0

by Lemma 6.19. Hence

|ζ(σ)|3 |ζ(σ+it)|4 |ζ(σ+2it)| ≥ e0 = 1.

�
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Theorem 6.21 The Riemann zeta function has no zeros in the half-plane

Re s ≥ 1.

Proof We already know that ζ(s) is non-zero for Re s > 1, so it remains
only to prove there are no zeros on Re s = 1.

Assume for contradiction that ζ(1 + it0) = 0 for some t0 6= 0 (recall that
there is a pole at s = 1 and so is not zero there).

Recall from Theorem 6.12 that ζ is holomorphic at 1+ it0 and thus its deriva-
tive exists there. By definition the derivative is a limit as s→ 1+it0 along any
path in C. Choose the horizontal line to the right of 1+ it0 when s = σ+ it0
and σ → 1 + . Hence

ζ ′(1 + it0) = lim
σ→1+

ζ(σ+it0)− ζ(1 + it0)

σ−1
= lim

σ→1+

ζ(σ+it0)

σ−1
,

having used the assumption ζ(1 + it0) = 0.

From Theorem 6.12, we saw that ζ(s) has a simple pole at s = 1, residue 1,
i.e.

lim
σ→1+

(σ−1) ζ(σ) = 1.

Also, ζ(s) is holomorphic at 1 + 2it0, i.e. differentiable and thus continuous
there, in which case

lim
σ→1+

ζ(σ+2it0) = ζ(1 + 2it0) .

We want to combine these three facts so consider, for σ > 1,

|(σ−1) ζ(σ)|3
∣

∣

∣

∣

ζ(σ+it0)

σ−1

∣

∣

∣

∣

4

|ζ(σ+2it0)| =
|ζ(σ)|3 |ζ(σ+it0)|

4 |ζ(σ+2it0)|

σ − 1

≥
1

σ−1
, (27)

by Lemma 6.20. Now let σ → 1+, when the left had side of (27) tends to
the finite limit

13 |ζ ′(1 + it0)|
4
|ζ(1 + 2it0)| ,

whilst the right hand side is unbounded.

This contradiction means that our original assumption was false, and thus
ζ(s) has no zeros on Re s = 1. �
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We can now see what was required in Lemma 6.19 for this proof to succeed.
It was important that the coefficients in 3 + 4 cos θ + cos 2θ were all positive
integers and that the constant term 3, was less then at least one of the other
coefficients, here 4.

In a later result we will show that ζ(s) in fact has no zeros slightly to the
left of Re s = 1.

Recall that zeros and poles of ζ(s) correspond with poles of the logarithmic
derivative ζ ′(s) /ζ(s). Thus since ζ(s) 6= 0 on Re s = 1 we conclude that
ζ ′(s) /ζ(s) has no poles on Re s = 1, s 6= 1. We defined F (s) as ζ ′(s) /ζ(s) +
ζ(s) because it has no pole at s = 1. Hence we conclude that F (s) is well-
defined on the closed half plane Re s ≥ 1.
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Appendix for Step 3

This discussion comes from GJOJ pp 70-71

Recall that for z ∈ C, a logarithm of z is any w for which ew = z. So
logarithms are not unique, they can differ by multiples of 2πi. Assume that
zj ∈ C are given for j ≥ 1, and logarithms wj chosen for each zj such that
∑

j wj converges to w. Then

ew = elimn→∞

∑n

j=1
wj = lim

n→∞
e
∑n

j=1
wj by the continuity of ez on C,

= lim
n→∞

n
∏

j=1

ewj = lim
n→∞

n
∏

j=1

zj

=
∞
∏

j=1

zj,

by the definition of infinite products. Thus w is a logarithm of the product.

We can use this to find a logarithm of the ζ-function from

ζ(s) =
∏

p

(

1−
1

ps

)

−1

,

for Re s > 1. the Euler product.

If we can find a logarithm for (1− 1/ps)−1 for each prime p and show that
the sum of the individual logarithms converges, then this lemma says that
this sum of logarithms will be a logarithm of the Euler Product and thus of
the Riemann zeta function.

Lemma 6.22
∞
∑

m=1

zm

m

is a logarithm of 1/ (1− z) for |z| < 1.

Proof Let

h(z) =
∞
∑

m=1

zm

m
.

We need to show that

eh(z) =
1

1− z
, i.e. (1− z) eh(z) = 1.
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Consider

d

dz
(1− z) eh(z) = −eh(z) + (1− z)h′(z) eh(z) = ((1− z)h′(z)− 1) eh(z).

But

h′(z) =
∞
∑

m=1

m
zm−1

m
=

∞
∑

n=0

zn =
1

1− z
,

for |z| < 1. Allowable since a power series can be differentiated term-by-term
within its radius of convergence. Working back,

d

dz
(1− z) eh(z) = 0 i.e. (1− z) eh(z) = c,

for some constant c. Put z = 0 to see that c = 1 as required. �

Thus a logarithm of (1− 1/ps)−1 is
∑

∞

m=1 1/mp
ms. And the sum over p of

these individual logarithms converges (absolutely) since

∑

p

∣

∣

∣

∣

∣

∞
∑

m=1

1

mpms

∣

∣

∣

∣

∣

≤
∑

p

∞
∑

m=1

1

mpmσ
≤

∑

p

∞
∑

m=1

1

pmσ
=

∑

p

1

pσ−1
,

having summed the inner geometric series, and this sum over primes con-
verges for σ > 1. Hence the Lemma tells us that

∑

p

∞
∑

m=1

1

mpms

is a logarithm of ζ(s) for Re s > 1.

Further, there is a general result

Theorem 6.23 Assume that

∞
∑

i=1

∞
∑

j=1

|aij|

converges, then
∞
∑

i=1

∞
∑

j=1

aij and

∞
∑

j=1

∞
∑

i=1

aij

both converge and to the same value S, say. Further, if
∑

∞

n=1 cn is any series

obtained by rearranging the term aij as a single series, then it also converges

to S.
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In our case we rearrange the ap,m = 1/mpms in increasing order of pm and
deduce that the Dirichlet Series

∞
∑

n=1

a(n)

ns
,

where a(n) = 1/m, if n = pm for some prime p, 0 otherwise, is convergent in
Re s > 1.
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