Step 3. ((1+1it) # 0.

Recall from Step 2 that for ¢ > 1 (strict inequality), we have

/jw(t)dt:;:ﬂ—

We hope to prove the Prime Number Theorem in the form ¢ (¢) ~ t. It
can be shown that this implies [[" 4 (¢)dt ~ 2?/2. Thus we expect that the

integral over the vertical line ¢ — ico to ¢ 4 700 in (25) to be an error term,
i.e. smaller in magnitude than the main term. Yet the integrand contains
a factor 27! which is of magnitude 2!, If ¢ > 1 this term, z¢*!, is larger
than the expected main term, z%/2. So we can only have any hope of proving
the Prime Number Theorem if we can choose ¢ = 1. But, is ' well-defined
on the line Res = 17

1 c+ico d
o F(S) $s+1 s

270 Joioo s(s+1)

+O(1).  (25)

From its definition F'(s) has ((s) on the denominator which we know is non-
zero for Res > 1, but is it non-zero on Res = 17

Lemma 6.19 For 6 € R, we have
3+ 4cosf + cos26 > 0.
Proof Start from the double angle formula
cos 20 = cos? § — sin? 0 = 2cos® 6 — 1.
Then
3+4cosf+cos20 = 2+4cosf+2cos?d
= 2(1+4cosh)’ > 0.
[ |

Logarithms of complex numbers Recall that if w € C then w = re' for
some r > 0 and #. The logarithm of w is given by logw = logr + 6. But in
fact w = re'@+27) for any k € 7Z, in which case logw = logr + i (6 + 27k).
Thus the logarithm is not unique. Nonetheless, the logarithm of the modulus
|w| is unique and equals

log |w| = logr = Re (logr + i (0 + 27k)) = Relog w,

the real part of any logarithm of z. In particular, it can be shown from the
Euler product for the Riemann zeta function that a logarithm of ((s) is given
by

22



log((s) = Y —log (1 - pl> = Zi m;ms.

p p m=1

Then using log |((s)| = Relog ((s), we get

=1
log [¢(s)] = RZmZ e
for Res > 1. Yet
Re 1 Re g itmlogp _ cos (—mtlog p) _ cos (Qm,t,p)’
pe pme pme pmo
where 0,,,, = —mtlogp. Hence
. cos (Omtp)
log[¢(s)| = ng_j o

Lemma 6.20 For o > 1 we have
(@) 1¢(o+it)[* (o +2it)] > 1.
Proof Consider

log (¢ (0)I* [¢(o+it)|" |¢(o+2it)])

= 3log|((o)| + 4log |C(o+it)| + log |((o+2it)]

B Z i (3 08 (O 0,p) + 4 €08 (0p1p) + COS (Hm’Qt’p)>

mpme
p m=1 P

Yet 0,0, = 0 and 0,,, 21, = 20,,,+,, and so this last expression equals

Z i 3+4cos (O1p) + cos (20,,1,) >0
mpmo -

p m=1

by Lemma 6.19. Hence

K@) [¢(o+it)]* [¢(o+2it)] > ¢ = 1.
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Theorem 6.21 The Riemann zeta function has no zeros in the half-plane
Res > 1.

Proof We already know that ((s) is non-zero for Res > 1, so it remains
only to prove there are no zeros on Res = 1.

Assume for contradiction that (1 +itg) = 0 for some ty # 0 (recall that
there is a pole at s = 1 and so is not zero there).

Recall from Theorem 6.12 that (is holomorphic at 1+ ity and thus its deriva-
tive exists there. By definition the derivative is a limit as s — 1+ity along any
path in C. Choose the horizontal line to the right of 1+ ity when s = o + itg
and 0 — 1+ . Hence

! . o . _
C(1+zt0)—01g{1+ o—1 _alggr o—1 7~

having used the assumption ((1 + ity) = 0.

From Theorem 6.12, we saw that ((s) has a simple pole at s = 1, residue 1,
ie.
lim (c0—1)¢(o) = 1.

o—1+

Also, ((s) is holomorphic at 1 + 2ity, i.e. differentiable and thus continuous
there, in which case

lim ((o+2itg) = (1 + 2ito) .

o—1+

We want to combine these three facts so consider, for ¢ > 1,

! 1C(0)]? (o +ito)]* (0 +2ito)]

SOF) (4 21y)]) =

o—1

(0=1)¢(0)]*

o—1

1
> — 2
> 27)

by Lemma 6.20. Now let 0 — 14, when the left had side of (27) tends to
the finite limit

12 |¢' (1 + ito)[* [C(1 + 2ity)]

whilst the right hand side is unbounded.

This contradiction means that our original assumption was false, and thus
((s) has no zeros on Res = 1. [
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We can now see what was required in Lemma 6.19 for this proof to succeed.
It was important that the coefficients in 3 + 4 cos 6 + cos 20 were all positive
integers and that the constant term 3, was less then at least one of the other
coefficients, here 4.

In a later result we will show that ((s) in fact has no zeros slightly to the
left of Res = 1.

Recall that zeros and poles of ((s) correspond with poles of the logarithmic
derivative (’(s) /¢(s). Thus since ((s) # 0 on Res = 1 we conclude that
('(s) /¢(s) has no poles on Res =1, s # 1. We defined F(s) as ¢'(s) /¢(s) +
((s) because it has no pole at s = 1. Hence we conclude that F(s) is well-
defined on the closed half plane Res > 1.
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Appendix for Step 3
This discussion comes from GJOJ pp 70-71

Recall that for z € C, a logarithm of z is any w for which ¥ = 2. So
logarithms are not unique, they can differ by multiples of 27i. Assume that
z; € C are given for j > 1, and logarithms w; chosen for each z; such that
> w; converges to w. Then

lim Zn wj Zn w
eV = e "TFLeg=1 = lim eii= by the continuity of ¢* on C,
n—oo

n n
= lim ||ew7: lim ||zj
n—o0 n— oo
j=1 7=1

oo

j=1
by the definition of infinite products. Thus w is a logarithm of the product.

We can use this to find a logarithm of the (-function from

for Res > 1. the Euler product.

If we can find a logarithm for (1 —1/p*)~" for each prime p and show that
the sum of the individual logarithms converges, then this lemma says that
this sum of logarithms will be a logarithm of the Euler Product and thus of
the Riemann zeta function.

Lemma 6.22

S‘Ns

m=1
is a logarithm of 1/ (1 — z) for |z|] < 1.

Proof Let

We need to show that

)= e (1-2)eP =1



Consider

dd (1 —2)eh® = —eh® 4 (1 = 2)W'(2)e"® = (1 = 2) W(2) — 1)@,
2
But
UEED DU ST
) = m = yA—
m=1 m n=0 L=z

for |z| < 1. Allowable since a power series can be differentiated term-by-term
within its radius of convergence. Working back,

d
—(1=2)e"® =0 ie. (1—2)e"=¢
Z(1-2) (1-2)e@=c,
for some constant c¢. Put z = 0 to see that ¢ = 1 as required. |

Thus a logarithm of (1 —1/p*)" is Yoo 1/mp™. And the sum over p of

these individual logarithms converges (absolutely) since

PRI) DI o) i e B) S g

mo
p |m=1 p m=1 p m:lp 2 p

having summed the inner geometric series, and this sum over primes con-
verges for 0 > 1. Hence the Lemma tells us that

>y

p m=1

mpms

is a logarithm of ((s) for Res > 1.

Further, there is a general result

Theorem 6.23 Assume that
2D ol
i=1 j=1
converges, then
NI 9 o
i=1 j=1 j=1 i=1

both converge and to the same value S, say. Further, if > " ¢, is any series
obtained by rearranging the term a;; as a single series, then it also converges
to S.
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In our case we rearrange the a,,, = 1/mp™® in increasing order of p™ and
deduce that the Dirichlet Series

>,

n=1

where a(n) = 1/m, if n = p™ for some prime p, 0 otherwise, is convergent in
Res > 1.
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